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Abstract. Arbitrary Pattern Formation (APF) is a fundamental coordi-
nation problem in swarm robotics. It requires a set of autonomous robots
(mobile computing units) to form any arbitrary pattern (given as input)
starting from any initial pattern. The APF problem is well-studied in
both continuous and discrete settings. This work concerns the discrete
version of the problem. A set of robots is placed on the nodes of an infinite
rectangular grid graph embedded in a euclidean plane. The movements
of the robots are restricted to one of the four neighboring grid nodes
from its current position. The robots are autonomous, anonymous, iden-
tical, and homogeneous, and operate Look-Compute-Move cycles. Here
we have considered the classical OBLOT robot model, i.e., the robots
have no persistent memory and no explicit means of communication. The
robots have full unobstructed visibility. This work proposes an algorithm
that solves the APF problem in a fully asynchronous scheduler under this
setting assuming the initial configuration is asymmetric. The considered
performance measures of the algorithm are space and number of moves
required for the robots. The algorithm is asymptotically move-optimal.
A definition of the space-complexity is presented here. We observe an
obvious lower bound D of the space complexity and show that the pro-
posed algorithm has the space complexity D + 4. On comparing with
previous related works, we show that this is the first proposed algorithm
considering OBLOT robot model that is asymptotically move-optimal
and has the least space complexity which is almost optimal.

Keywords: Distributed Algorithms · Oblivious robots · Optimal Algo-
rithms · Swarm robotics · Space optimisation · Rectangular grid

1 Introduction

Swarm robotics involves a group of simple computing units referred to as robots
that operate autonomously without having any centralized control. Moreover,
the robots are anonymous (no unique identifier), homogeneous (all robots exe-
cute the same algorithm), and identical (physically indistinguishable). Generally
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on activation, a robot first takes a snapshot of its surroundings. This phase is
called a Look phase. Then based on the snapshot an inbuilt algorithm deter-
mines a destination point. This phase is called a Compute phase. Finally, in
Move phase it moves towards the computed destination. These three phases
together are called a Look-Compute-Move (LCM) cycle of a robot.

Through collaborative efforts, these robot swarms can accomplish different
tasks such as gathering at a specific point (Gathering), configuring into pre-
determined patterns (Pattern Formation), navigating networks (Exploration),
etc. Presently, the field of robotics research is witnessing significant enthusiasm
for swarm robots. The inherent decentralized characteristics of these algorithms
provide swarm robots with a notable advantage, as distributed algorithms are
both easily scalable and more resilient in the face of errors. Furthermore, swarm
robots boast a multitude of real-world applications, including but not limited to
tasks like area coverage, patrolling, network maintenance, etc.

In order to accomplish specific tasks, robots require some computational ca-
pabilities, which can be determined by various factors such as memory, communi-
cation, etc. With respect to memory and communication, the literature identifies
two primary robot models. The first one is called the OBLOT model. In this
model, the robots are devoid of persistent memory and communication abilities.
Another robot model is the LUMI model where the robots are equipped with
a finite number of lights that can take a finite number of different colors. These
colors serve as persistent memory (as a robot can see its own color) and com-
munication architecture (as the colors of lights are visible to all other robots).

The responsibility for activating robots rests with an entity referred to as
the Scheduler. Within the existing literature, three primary types of schedulers
emerge: Fully-Synchronous (FSYNC), Semi-Synchronous (SSYNC), and Asyn-
chronous (ASYNC). In the case of fully synchronous and semi-synchronous
schedulers, time is partitioned into rounds of uniform length. The duration of
the Look, Compute, and Move phases for all activated robots are identical.
Under a fully-synchronous scheduler, all robots become active at the onset of
each round, but in a semi-synchronous setup, not all robots may activate simul-
taneously in a given round. In an asynchronous scheduler, round divisions are
absent. At any given moment, a robot can be either idle or engaged in any of
the Look, Compute, or Move phases. The duration of these phases and the
spans of robot idleness are finite but unbounded.

The primary focus of this study is to solve the Arbitrary Pattern Forma-
tion (APF) problem on an infinite rectangular grid while minimizing spatial
utilization. The APF problem involves a group of robots situated within an en-
vironment, aiming to create a designated pattern. This pattern is conveyed to
each robot as a set of points within a coordinate system as an input. Notably,
these robots lack any global consensus regarding coordinates. This problem has
been extensively studied in the euclidean plane ([2,3,4,6,7,8,15,16]). Bose et al.
[1] first proposed this problem on a rectangular grid. The rectangular grid is a
natural discretization of the plane. To the best of our knowledge, on the discrete
domain, this problem has been studied in [1,5,9,11,10,12,11,14]. The primary
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approach to tackle this issue involves establishing a consensus on a shared coor-
dinate system. Subsequently, the pattern is translated and embedded into this
agreed-upon coordinate framework. The robots then navigate to their target po-
sitions while maintaining adherence to the established consensus. In this paper,
the focus is placed on an environment characterized by an infinite rectangular
grid. In the upcoming subsection, we delve into the reasons behind the intro-
duction of spatial constraint in the context of the arbitrary pattern formation
(APF) problem.

1.1 Motivation

In the majority of previous studies, the implementation of this problem on a grid
necessitates a substantial allocation of space (space of a configuration formed by
a set of robots is the dimension of the smallest enclosing square of the configura-
tion), even when both the initial and target configurations have minimal spatial
requirements. This promptly gives rise to a lot of problems.

To begin with, in the scenario where the grid is of bounded dimensions, it
is possible that certain patterns cannot be formed, even if robots are initially
located within the bounded grid and the target pattern could potentially fit
within the grid. This limitation arises due to the existence of intermediate con-
figurations that demand a spatial extent that cannot be accommodated within
the confined grid. Moreover, when the spatial demand for an APF algorithm on
a grid increases, the count of patterns that can be formed within a bounded grid
becomes noticeably fewer compared to the count of patterns formable on the
same grid with a lower space requirement. To be more specific, patterns that are
‘big enough’ can not be formed if the space requirement is ‘big’ on a bounded
grid. So, the requirement of large space compromises better utilization of the
space.

Moreover, even if complete visibility is entertained for theoretical consider-
ations, this assumption does not hold practical validity within an unbounded
environment. In the context of a bounded region, it can be applied with the
premise that the environment is finite, and the entire environment falls within
the visibility range of each robot. However, introducing the concept of an infinite
grid disrupts this assumption. In situations where the grid lacks bounds, it is
possible that due to substantial spatial requirements, certain robots might stray
beyond the visibility range of others.

To the best of our knowledge, there remains an absence of work that addresses
the APF challenge within the constraints of limited visibility, an asynchronous
scheduler, and the absence of any global coordinate agreement. Thus in this
paper, the problem of APF on a grid with minimal spatial requirement has been
considered.
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2 Related work and our Contribution

2.1 Related Work

The APF problem has been investigated in both continuous and discrete settings.
In the continuous setting, the problem has been investigated on the euclidean
plane [2,3,4,6,7,8,15,16] and on a continuous circle [13]. In a discrete setting, the
problem is first studied in [1]. Here, the authors solved the problem determinis-
tically on an infinite rectangular grid with OBLOT robots in an asynchronous
scheduler. Later in [5], the authors studied the problem on a regular tessella-
tion graph. In [1] authors count the total required move asymptotically and also
give an asymptotic lower bound for the move-complexity i.e., total number of
moves required to solve the problem. In [5], authors did not count the total
number of moves required for their proposed algorithm. In [9], the authors pro-
vided two deterministic algorithms for solving the problem in an asynchronous
scheduler. The first algorithm solves the APF problem for OBLOT model. The
move-complexity of this algorithm matches the asymptotic lower bound given in
[1]. Thus, this algorithm is asymptotically move-optimal. The second algorithm
solves the problem for the LUMI model, and this algorithm is asymptotically
move-optimal. Further authors showed that the algorithm is time-optimal, i.e.,
the number of epochs (a time interval in which each robot activates at least once)
to complete the algorithm is asymptotically optimal. In [11], the authors provided
a deterministic algorithm for solving the problem with opaque (non-transparent)
point robots in LUMI model with an asynchronous scheduler assuming one-axis
agreement. In [10], the authors proposed two randomized algorithms for solving
the APF problem in an asynchronous scheduler. The second algorithm works for
the OBLOT model. This algorithm is asymptotically move-optimal and time-
optimal. The randomization in this algorithm is only used to break any present
symmetry in the initial configuration. If the initial configuration is asymmetric
then the algorithm is deterministic. The first algorithm works for opaque point
robots with LUMI model. This algorithm is also asymptotically move-optimal
and time-optimal. In [12], the authors solve the problem with opaque fat robots
(robots having nontrivial dimension) with LUMI model in an asynchronous
scheduler assuming one-axis agreement. In [14] authors provide an asymptoti-
cally move-optimal algorithm solving this problem with robots in LUMI model.
The work also considered a special requirement and showed that the algorithm
is space-optimal. In the next section, we formally state the space complexity of
an algorithm and discuss the space complexity of the mentioned works.

2.2 Space Complexity of APF Algorithms in Rectangular Grid

In all the works mentioned for APF, finding a solution was the first challenge.
Then the work tilted towards finding optimal solutions, considering different
aspects. So far, the aspects considered were the total number of moves made
by the robots, the total time to solve the problem, and finally in [14] authors
considered the total space required to execute an algorithm. In Definition 1, we
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define the space complexity of an algorithm executed by a set of robots on a
rectangular grid.

Definition 1. The space complexity of an algorithm executed by a set of robots
on a rectangular grid as the minimum dimension of the squares (whose sides are
parallel with the grid lines) such that no robot steps out of the square throughout
the execution of the algorithm.

Space Complexity of earlier APF algorithms and comparison with
proposed algorithm Let the smallest enclosing rectangle (SER), the sides of
which are parallel to grid lines, of the initial configuration and pattern con-
figuration formed by the robots, respectively, be m × n and m′ × n′. Let D =
max{m,n,m′, n′}. Then the minimum space complexity for an algorithm to solve
the APF problem is D.

First, we look at the space complexity of the algorithms solving APF for the
OBLOT model. The algorithm proposed in [1] has space-complexity at least
2D in the worst case as one of the leaders, named tail moves far away from the
rest of the configuration. The first algorithm proposed in [9] is for the OBLOT
model. It requires the robots to form a compact line. The space complexity of
these algorithms is D2 in the worst case. The second randomized algorithm in
[10] is for the OBLOT model. In this algorithm, the leader robot moves upwards
far away from the rest of the configuration. Thus, it has a space complexity of
at least 30D in the worst case.

Next, we focus on the space complexity of the algorithms solving APF for the
LUMI model. The second algorithm proposed in [9] is for the LUMI model.
This algorithm requires a step-looking configuration where each robot occupies
a unique vertical line. Therefore, the space complexity of the algorithm can be
D2 in the worst case. This algorithm needs each robot to have a light with three
distinct colors. The first randomized algorithm in [10] for LUMI model has
space-complexity at least D + 2. The authors also did not count the number of
lights and colors required for the robots. With a closer look, we observe that this
algorithm uses at least 31 distinct colors. Further, deterministic APF algorithms
proposed in [12,11] solved it for obstructed visibility. These works also need the
robots to form a compact line, hence the space complexity of these algorithms is
D2 in the worst case. The proposed algorithm in [14] has space-complexity D+1
and it requires three distinct colors.

We say that the first algorithm proposed in [10] and algorithm proposed in
[14] are almost space-optimal, as the space-complexity is of the form D + c, D
is a lower bound of the space-complexity and c is a constant independent of D.

Our Contribution This work presents a deterministic algorithm for solving
APF in an infinite rectangular grid which is almost space-optimal as well as
asymptotically move-optimal. Precisely, the space complexity for the algorithm
is D+4 and move-complexity of the algorithm is O(kD), where k is the number
of robots. The robot model is classical OBLOT model and scheduler is fully
asynchronous. To the best of our knowledge so far, this is the first deterministic
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algorithm solving APF problem in OBLOT robot model that has the least
space-complexity, optimal move-complexity (See Table 1 for comparison with
the previous works).

Table 1. Comparison table

Work Model Visibility Deterministic/
Randomised

Space-
complexity

[1] OBLOT Unobstructed Deterministic ≥ 2D
1st algorithm in
[9]

OBLOT Unobstructed/ Deterministic D2

2nd algorithm in
[10]

OBLOT Unobstructed Randomised1 ≥ 30D

2nd algorithm in
[9]

LUMI Unobstructed Deterministic D2

1st algorithm in
[10]

LUMI Obstructed Randomised ≥ D+2

[11] LUMI Obstructed Deterministic D2

[12] LUMI Obstructed (fat
robot)

Deterministic D2

[14] LUMI Unobstructed Deterministic D + 4
Algorithm in
this paper

OBLOT Unobstructed Deterministic D + 1

Outline of the paper In the Section 3, the model and problem statement is
provided. In Section 4, the problem is addressed on a discrete infinite line. In
Section 5, the proposed algorithm for the rectangular grid is provided. Finally,
Section 6 concludes the paper.

3 Model and Problem Statement

Robot The robots are assumed to be identical (indistinguishable from appear-
ance), anonymous (no unique identifier), autonomous (no centralized control),
and homogeneous (they execute the same deterministic algorithm). The robots
are equipped with technology so that a robot can determine the positions of all
other robots using a local coordinate system (chosen by the robot). Robots are
oblivious, i.e., they do not have any persistent memory to remember previous
configurations or past actions. Robots do not have any explicit means of com-
munication with other robots. The robots are modeled as points on an infinite
rectangular grid graph embedded on a plane. Initially, robots are positioned on
distinct grid nodes. A robot chooses the local coordinate system such that the
axes are parallel to the grid lines and the origin is its current position. Robots
do not agree on a global coordinate system. The robots do not have a global
sense of clockwise direction. A robot can only rest on a grid node. Movements
of the robots are restricted to the grid lines, and through a movement, a robot
can choose to move to one of its four adjacent grid nodes.
1 The randomisation is only used to break any symmetry present in the initial config-

uration
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Look-Compute-Move Cycle A robot has two states: sleep/idle state and
active state. On activation, a robot operates in Look-Compute-Move (LCM)
cycles, which consist of three phases. In the Look phase, a robot takes a snapshot
of its surroundings and gets the position of all the robots. We assume that the
robots have full, unobstructed visibility. In the Compute phase, the robots run
an inbuilt algorithm that takes the information obtained in the Look phase and
obtains a position. The position can be its own or any of its adjacent grid nodes.
In the Move phase, the robot either stays still or moves to the adjacent grid node
as determined in the Compute phase.

Scheduler The robots work asynchronously. There is no common notion of
time for robots. Each robot independently gets activated and executes its LCM
cycle. In this scheduler, the Compute phase and Move phase of robots take a
significant amount of time. The time length of LCM cycles, Compute phases,
and Move phases of robots may be different. Even the length of two LCM cycles
for one robot may be different. The gap between two consecutive LCM cycles, or
the time length of an LCM cycle for a robot, is finite but can be unpredictably
long. We consider the activation time and the time taken to complete an LCM
cycle to be determined by an adversary. In a fair adversarial scheduler, a robot
gets activated infinitely often.

Grid Terrain and Configurations Let G be an infinite rectangular grid graph
embedded on R2. The G can be formally defined as a geometric graph embedded
on a plane as P × P, which is the cartesian product of two infinite (from both
ends) path graphs P. Suppose a set of k > 2 robots is placed on G. Let f be a
function from the set of vertices of G to N ∪ {0}, where f(v) is the number of
robots on the vertex v of G. Then the pair (G, f) is said to be a configuration of
robots on G. For the initial configuration (G, f), we assume f(v) ≤ 1 for all v.

Symmetries Let (G, f) be a configuration. A symmetry of (G, f) is an auto-
morphism ϕ of the graph G such that f(v) = f(ϕ(v)) for each node v of G. A
symmetry ϕ of (G, f) is called trivial if ϕ is an identity map. If there is no non-
trivial symmetry of (G, f), then the configuration (G, f) is called a asymmetric
configuration and otherwise a symmetric configuration. Note that any automor-
phism of G = P × P can be generated by three types of automorphisms, which
are translations, rotations, and reflections. Since there are only a finite number
of robots, it can be shown that (G, f) cannot have any translation symmetry.
Reflections can be defined by an axis of reflection that can be horizontal, ver-
tical, or diagonal. The angle of rotation can be of 90◦ or 180◦, and the center
of rotation can be a grid node, the midpoint of an edge, or the center of a unit
square. We assume the initial configuration to be asymmetric. The necessity of
this assumption is discussed after the problem statement.

Problem Statement Suppose a swarm of robots is placed in an infinite rectan-
gle grid such that no two robots are on the same grid node and the configuration
formed by the robots is asymmetric. The Arbitrary Pattern Formation (Apf)
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problem asks to design a distributed deterministic algorithm following which the
robots autonomously can form any arbitrary but specific (target) pattern, which
is provided to the robots as an input, without scaling it. The target pattern is
given to the robots as a set of vertices in the grid with respect to a cartesian
coordinate system. We assume that the number of vertices in the target pattern
is the same as the number of robots present in the configuration. The pattern
is considered to be formed if the present configuration is a configuration and is
the same up to translations, rotations, and reflections. The algorithm should be
collision-free, i.e., no two robots should occupy the same node at any time, and
two robots must not cross each other through the same edge.

Admissible Initial configurations We assume that in the initial configura-
tion, there is no multiplicity point, i.e., no grid node that is occupied by multiple
robots. This assumption is necessary because all robots run the same determin-
istic algorithm, and two robots located at the same point have the same view.
Thus, it is deterministically impossible to separate them afterward. Next, sup-
pose the initial configuration has a reflectional symmetry with no robot on the
axis of symmetry or a rotational symmetry with no robot on the point of rotation.
Then it can be shown that no deterministic algorithm can form an asymmetric
target configuration from this initial configuration. However, if the initial con-
figuration has reflectional symmetry with some robots on the axis of symmetry
or rotational symmetry with a robot at the point of rotation, then symmetry
may be broken by a specific move of such robots. But making such a move may
not be very easy as the robots’ moves are restricted to their adjacent grid nodes
only. In this work, we assume the initial configuration to be asymmetric.

4 Space-optimal Arbitrary pattern formation on a grid
line

In this section, we solve this problem on a discrete straight line. The proposed
algorithm is space-optimal. The space complexity of an algorithm in this case is
defined as the minimum length of the line segment such that no robot steps out
of the line segment throughout the execution of the algorithm. Suppose we have
an infinite path graph P = {(i, i+1)|i ∈ Z} embedded on a straight line. Suppose
k robots are placed on P at distinct nodes. A configuration is defined similarly as
done in the previous section by considering G as P. The target pattern is given
as a set of k distinct positive integers. We define the length of a line segment
as the number of grid points on it. Suppose AiBi is the smallest line segment
in length such that all robots are on AiBi in the initial configuration and p− 1
is the hop distance of the farthest two target positions. Then, max{|AiBi|, p} is
the minimal space required for any algorithm that solves on a line.

Leader election and Global coordinate setup We assume the initial config-
uration of robots does not have reflectional symmetry. First, we set up a global
coordinate system that can be agreed upon by all the robots. Suppose C be a
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configuration having no reflectional symmetry. For a configuration, we define the
smallest enclosing line segment (SEL) to be the smallest line segment in length
that contains all the robots in the configuration. Let L = AB be the SEL of the
configuration C. Consider two binary strings of length |AB| (the length of a line
segment is the number of grid points on the line segment) called λA and λB with
respect to the endpoints of the L. Let λA = {ai}|AB|

i=1 such that ai = 1 if the node
on the AB line segment having distance i − 1 from A is occupied by a robot.
Similarly, we define λB . Since C has no reflectional symmetry, so λA and λB are
different. Therefore one of them is lexicographically smaller than the other. Let
suppose λA be lexicographically smaller than λB . Then A is considered as the
origin and

−−→
AB is considered as the positive (right) direction. Also, the robot

located at A is said to be head and the robot located at B is said to be tail. We
denote C \ {tail} as C′.

Target Embedding Next we embed the pattern in the following way. Consider-
ing the integers given in the target pattern on the number line proceed similarly
as done above for C. Let Ctarget be the target configuration and A′B′ be the SEL
of Ctarget. Consider two binary strings λA′ and λB′ . If both the strings are equal
then (the target pattern has a reflectional symmetry) then embed the pattern
such that all the target positions are on the right side of the origin and left most
target position is on the origin. If the strings are different then we suppose λA′

is the lexicographically smaller one. In this case, embed the pattern such that
A = A′ and all the target positions are on the right side of the origin. After
embedding the farthest target position from the origin is said to be tail-target
and denoted as ttarget. We define, C′

target = Ctarget \ {ttarget}.

Proposed APF algorithm a line Next, we described our proposed algorithm
ApfLine. If in a snapshot of a robot, another robot is seen on an edge then
the robot discards the snapshot and goes to sleep. Therefore, for simplicity, we
assume that any snapshot taken by a robot contains a still configuration C. The
head never moves in the algorithm. Firstly, if C′ = C′

target then the tail moves to
ttarget. Otherwise, if ttarget is at the right of the tail, then the tail moves right
and the other robot remains static. If C′ ̸= C′

target, and the tail is at the ttarget
or at the right of the ttarget, then inner robot move to make C′ = C′

target. Let ri
be the ith robot from the left and ti be the ith target position from the left. We
try to design the algorithm such that ri moves to ti. The r1 robot is the head
and it is already on t1. If ti is towards the left of ri and the left adjacent grid
node is empty, then an inner robot ri moves towards the left. If for each inner
robot rj , tj is at the right of the rj , then an inner robot ri moves right if ti is at
the right of the ri and the right adjacent grid node is empty. The pseudo-code
of the algorithm is given in Algorithm 1.

Correctness of the Algorithm ApfLine For two finite binary strings λ1

and λ2 of same length, λ1 ≺ (⪯)λ2 shall denote that λ1 is lexicographically less
than (less or equal to) λ2. Next, we make a simple observation in Proposition 1
and then another observation in Proposition 2.
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Algorithm 1: ApfLine

1 if C′ = C′
target then

2 tail moves towards ttarget;
3 else
4 if ttarget is at the right of the tail then
5 tail moves towards right;
6 else
7 if r = ri is an inner robot then
8 if ti is at the left of ri then
9 if left adjacent grid node is empty then

10 r moves towards left;

11 else if for each inner robot rj , tj is at the right of the rj then
12 if ti is at the right of ri then
13 if right adjacent grid node is empty then
14 r moves towards right;

Proposition 1. Let C be a still configuration and AB the SEL of C. Let λA

and λB be the binary strings for the two endpoints. Suppose an inner robot, say
r, moves to its adjacent empty grid towards A. Let λnew

A and λnew
B be the new

binary strings after the movement, then λA ≺ λnew
A and λnew

B ≺ λB.

Proposition 2. Let C be a configuration and L = AB, the SEL of C such that
λB ⪯ λA. Let the robot situated at B move outside the L and reach the point,
say B′, and the new configuration become, say C′. If λ′

A and λ′
B′ are the binary

strings for C′, then λ′
B′ ≺ λ′

A.

Proof. Let λA = a1a2 . . . an−1an and λB = b1b2 . . . bn−1bn. Then according to
the configuration C′, λ′

A = a1a2 . . . an−10an and λ′
B′ = b10b2 . . . bn−1bn. Since

the total number of robots present in the system is > 2, so there exists the
smallest i such that 2 ≤ i ≤ n − 1 and ai = 1. If i = 2, that is, a2 = 1, then
λ′
B′ ≺ λ′

A because second entry of λ′
B′ is zero. If i > 2, then ai−1 = bi−1 = 0 is

the ith entry of λ′
B′ whereas ith entry of λ′

A is ai = 1. The first i−1 corresponding
entries of λ′

B′ and λ′
A are equal. Thus, λ′

B′ ≺ λ′
A.

Next let λB ≺ λA. For this case, let jth entry is the first entry from left
where λA and λB differ. Then aj = 1 but bj = 0, ai = bi for all i < j. If a2 = 1,
then λ′

B′ ≺ λ′
A. Otherwise, if a2 = 0 then from λB ≺ λA, we have b2 must be

zero. Again if a3 = 1, λ′
B′ ≺ λ′

A. Otherwise, if a3 = 0 then b3 must be zero from
λB ≺ λA. Similarly proceeding, we get a2 = b2 = . . . aj−1 = bj−1 = 0. Then jth

entry of λ′
A is 1 but jth entry of λ′

B′ is bj−1 = 0. Thus, λ′
B′ ≺ λ′

A. □

Next, in the Algorithm 1, there are so-called four types of movements. These
four types are respectively in lines 2, 5, 10, and 14 of the Algorithm 1. The first
two types are the movements by the tail and the other two types are movements
by inner robots. In Lemma 1 and Lemma 2, it proved that through the move-
ments of inner robots, the configuration remains asymmetric and the coordinate
system does not change until the target pattern is formed. In Lemma 3, it is
shown that after finite movements of inner robots, all the inner robots occupy
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their respective target positions. In Lemma 4 and Lemma 5, it is shown that
the movements by tails do not bring any symmetry in the configuration and the
coordinate system remains unchanged until the target pattern is formed. Also,
it is shown that, after a finite time the prescribed goal is achieved via the move-
ments of the tail. Finally, in Theorem 1 the correctness of the Algorithm 1 is
proved.

Lemma 1. If an inner robot moves left then the configuration remains asym-
metric and the coordinate system does not change.

Proof. Let at time t, the head and tail robot is at A and B, respectively. Then
λB ≺ λA. Suppose, an inner robot moves towards the left and λnew

A and λnew
B be

the updated respective binary strings. Then from Proposition 1, λA ≺ λnew
A and

λnew
B ≺ λB . Therefore, combining the three inequalities we get λnew

B ≺ λnew
A .

Thus, the new configuration is asymmetric, and the coordinate system does not
change. □

Lemma 2. If an inner robot moves rightwards according to the Algorithm 1,
then the configuration remains asymmetric, and the coordinate system does not
change unless the target pattern has been formed.

Proof. Let at time t, the head and tail robot is at A and B, respectively. Then
λB ≺ λA. Suppose, an inner robot rk is about to move towards right according
to the Algorithm 1 and after the movement λnew

A and λnew
B be the updated

respective binary strings. According to the Algorithm 1 the scenario is, some
inner robots are on their respective target positions, and the respective target
positions of the rest inner robots are on their right side. The robot rk is one of
them. Also, at this time the tail is either at the ttarget or at the right of ttarget.
Let’s consider a configuration C′ considering the tail at B and all other target
positions but ttarget are occupied by robots. Let λ′

A and λ′
B be the binary strings

for the end points A and B, respectively, in C′. If ttarget is at B then according
to the target embedding λ′

B ⪯ λ′
A. Otherwise, if B is at the right of the ttarget,

from Proposition 2 λ′
B ≺ λ′

A. Thus combining both, we can say λ′
B ⪯ λ′

A . . . (1).
The proof would be done if we show that λnew

B ≺ λnew
A . On the contrary, if

possible let λnew
A ⪯ λnew

B . . . (2). Since the target pattern has not been formed,
some inner robots still need to move right. Thus, from Proposition 1 we have
λnew
B ≺ λ′

B . . . (3) and λ′
A ≺ λnew

A . . . (4). Then from (2) and (3), we have λnew
A ≺

λ′
B . . . (5). From (4) and (5), we have λ′

A ≺ λ′
B , which contradicts (1). □

Lemma 3. If at some time t, we have an asymmetric configuration C such that
C′ ̸= C′

target, and the tail is at the ttarget or at the right of the ttarget, then after
a finite time, through the movements of inner robots, C′ = C′

target becomes true.

Proof. If the inner robots successfully can move according to our algorithm then
after a finite time all inner robots take their respective target positions making
C′ = C′

target true. The matters that need to be taken care of are (1) the head
and the tail robot remain head and tail, respectively (hence, the coordinate
system remains unchanged), and (2) no collision or deadlock occurs throughout
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the movement of the inner robots. From Lemma 1 and lemma 2, we have that
throughout the execution of the algorithm 1 when the inner robots move, the
head and tail remains head and tail respectively and hence the coordinate system
remains unchanged. Next, According to the Algorithm 1 an inner robot only
moves to its empty adjacent grid node. Thus, a collision can only happen if two
robots move to the same node. Suppose, two inner robots ri and ri+1 move to
an empty node v. This implies, either ti and ti+1 both are at v or ti is at the
right of ti+1, which is not possible. Thus, no collision will occur. Then we show
no deadlock will be created throughout the movement of the inner robots. A
deadlock can occur if there are two inner robots ri and ri+1 adjacent to each
other, where ri wants to move towards right and ri+1 is either at tj+1 or wants
to move towards left. From a similar argument as before, this is not possible. □

Lemma 4. If at some time t, we have an asymmetric configuration C such that
C′ ̸= C′

target, and the tail is at the left of ttarget, then after a finite number of
moves by tail towards right the tail reaches ttarget.

Proof. Let AB be the SEL of the C such that the tail is at B. Let λA and λB

be the binary strings in C. Then λB ≺ λA. Suppose the tail moves towards
the right and moves to a point B′, and the new configuration is C′. Let λ′

A

and λ′
B′ be the binary strings from the endpoints of the SEL of C′. Then from

Proposition 2, λ′
B′ ≺ λ′

A. Thus, after the movement of the tail towards the right,
the configuration remains asymmetric and the tail robot remains the tail. Thus,
after a finite move towards ttarget, the tail reaches ttarget. □

Lemma 5. If at some time t, the configuration is C such that C′ = C′
target is

true, then after a finite move of the tail towards ttarget target pattern gets formed.

Proof. Let AB be the SEL of the configuration C such that the tail is situated
at B. Suppose the embedding of the target ttarget is at Bt. If Bt and B are one
hop away from each other then after one movement of the tail target pattern
will be formed. Suppose Bt and B are not adjacent to each other. According to
the Algorithm 1 the tail moves towards Bt. Suppose after one movement the tail
lands on the point B′ and the configuration becomes C′. We need to show the
tail remains the tail after moving to B′. Let λ′

A and λ′
B′ be the binary strings

from the endpoints of the SEL of C′. There are two exhaustive cases: The point
Bt is on the line segment AB or not. If Bt is on the line segment AB then the
tail moved left and also Bt is on the line segment AB′. From Proposition 2,
λ′
B′ ≺ λ′

A. This gives that C′ is asymmetric and the tail robot remains tail in
C′. For the remaining case, we have Bt is not on the line segment AB. Then the
tail moved right and also Bt is not on the line segment AB′. Since the tail was
at B in C, so if λA and λB are the binary strings for C then λB ≺ λA. Then
from Proposition 2, a similar conclusion as the former case can be made. Thus,
after each movement of the tail towards ttarget the tail remains the tail until it
reaches ttarget, and after a finite number of movements tail reaches ttarget that
completes the target formation. □
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Theorem 1. From any asymmetric initial configuration, the algorithm 1 can
form any target pattern on an infinite grid line within finite time under an
asynchronous scheduler.

Proof. Let C be an asymmetric initial configuration. If for the initial configura-
tion, C′ = C′

target is true, then from Lemma 5 after a finite time target pattern
gets formed. Suppose, initial configuration satisfy C′ ̸= C′

target, there can be two
exhaustive cases. Either the tail is at the left side of the ttarget or not. If the
tail is at the left side of the ttarget, then from Lemma 4 we have that after finite
movements, the tail reaches the ttarget. Thus after a finite time, we arrive at the
configuration where C′ ̸= C′

target is true and the tail is either on the ttarget or
on the right side of ttarget. Then from Lemma 3 we have that, after finite time
C′ = C′

target becomes true. Now at this time, if the tail is on the ttarget then the
target pattern has been formed. If the tail is at the right side of the ttarget, then
from Lemma 5, after a finite time target pattern gets formed. The flow of the
algorithm is given in Fig. 1. □

Tail is at the left of
Tail is at or on the

the right of

Tail moves right
(Lemma 4)

Tail moves towards

(Lemma 5)

Inner robots move
(Lemma 3)

Fig. 1. Flow of the Algorithm ApfLine

Space and Move-complexity of Algorithm ApfLine Let AB be the SEL
of the initial configuration and A′B′ be the SEL of the target configuration. Let
D = max{|AB|, |A′B′|}, then D is the minimal space required for any ApfLine
algorithm to execute on a grid line. Next, in Theorem 2, we prove that the algo-
rithm ApfLine has space complexity D, hence it is space-optimal. In Theorem 3,
we give the move-complexity of the algorithm ApfLine.

Theorem 2. The algorithm ApfLine has space-complexity D.

Proof. In this algorithm, the inner robots never step out of the line segment
formed by the head and the tail robot. The head never moves in the algorithm.
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So only the tail robot is responsible for taking more space. Let AB be the SEL
of the initial configuration and A′B′ be the SEL of the target configuration after
embedding. Let C be a point such that C = B if |AB| ≥ |A′B′| and C = B′

otherwise. Then |AC| = D.
We have two exhaustive cases, C = B or C = B′. If C = B, then the tail

stays on C until for the current configuration C, C′ = C′
target becomes true. After

that, the tail moves to B′ where ttarget is located via execution of line 2 of the
algorithm, and, B′ is on the line segment AC. Thus, if C = B then no robot
steps out of the line segment AC. If C = B′, then the tail moves from B to
B′ via execution of line 4 of the algorithm and it never moves afterward. Thus,
if C = B′ then no robot steps out of the line segment AC. Thus, the space
complexity of the algorithm is |AC| = D. □

Theorem 3. The algorithm ApfLine has move-complexity less than kD.

Proof. Except the head all robot ri moves from its position (Ii) in the ini-
tial configuration to its target position (Ti) without repeating any node. Also,
|IiTi| < D. Thus, the total number of moves is less than kD. □

5 The Proposed Apf Algorithm on a rectangular grid

5.1 Agreement of a global coordinate system

Let C be an asymmetric configuration. Consider the smallest enclosing rectangle
(SER) containing all the robots where the sides of the rectangle are parallel
to the grid lines. Let R = ABCD be the SER of the configuration, a m × n
rectangle with |AD| = m ≥ n = |AB|. The length of the sides of R is considered
the number of grid points on that side. If all the robots are on a grid line, then
R is just a line segment. In this case, R is considered a m × 1 ‘rectangle’ with
A = B, D = C, and AB = CD = 1.

For a side, say AB, of the R we define a binary string, denoted as λAB , as
follows. Let (A = A1, A2, . . . , Am = D) be the sequence of grid points on the
AD line segment and (B = B1, B2, . . . , Bm = C) be the sequence of grid points
on the BC line segment. Scan the line segment AB from A to B. Then scan
the line segments AiBi one by one in the increasing order of i. The direction of
scanning the line segment AiBi is set as follows: Scan it from Bi to Ai if i is
even and scan it from Ai to Bi if i is odd. While scanning, for each grid point
put 0 or 1 according to whether it is empty or occupied.

If m > n > 1, then for each corner point A, B, C, and D, consider the
binary strings λAB , λBA, λCD and λDC , respectively. If m = n > 1, then for
each corner point, we have to associate two binary strings with respect to the
two sides adjacent to the corner point. Then we have eight binary strings λAB ,
λBA, λAD, λDA, λBC , λCB , λDC and λCD. If any two strings of them are equal
then it can be shown that C has a (reflectional or rotational) symmetry. Since C
is asymmetric, we can find a unique lexicographically largest string. Let λAB be
the lexicographically largest string, and then A is considered the leading corner
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Fig. 2. ABCD is the SER of the configuration. λAB = 01101101010011010100 is the
largest lexicographic string, and rh and rt are respectively the head and tail robots of
the configuration.

of the configuration. The leading corner is taken as the origin, and
−−→
AB is as the

x-axis, and
−−→
AD is as the y-axis.

If the R is an m×1 rectangle, then λAB and λBA are refers to the same string.
Then we have two strings to compare. Since the configuration is asymmetric,
these two strings must be distinct. Then we shall have a leading corner, say
A = B. For this case, A is considered as the origin, and

−−→
AD is as the y-axis.

There will be no agreement of the x-axis in this case but since all the robots are
on the y-axis, so x-coordinate of the positions of the robots are 0 at this time.

If C is asymmetric then a unique string can be elected and hence, all robots
can agree on a global coordinate system. By ‘up’ (‘down’) and ‘right’ (left),
we shall refer to the positive (‘negative’) directions of the x-axis and y-axis of
the coordinate system, respectively. The robot responsible for the first 1 in this
string is considered the head robot of C and the robot responsible for the last 1
is considered the tail of C. The robot other than the head and tail is termed the
inner robot. We define, C′ = C \ {tail} and C′′ = C \ {head, tail}.

5.2 Target pattern embedding

Here we discuss how robots are supposed to embed the target pattern when they
agree on a global coordinate system. The target configuration Ctarget is given
with respect to some arbitrary coordinate system. Let the R′ = A′B′C ′D′ be
the SER of the target pattern, an m′ × n′ rectangle with |A′D′| ≥ |A′B′| ≥ 1.
We associate binary strings similarly for R′ as done for R. Let λA′B′ be the
lexicographically largest (but may not be unique because the Ctarget can be
symmetric) among all other strings for R′. The first target position on this string
λA′B′ is said to be head-target and denoted as htarget and the last target position
is said to be tail-target and denoted as ttarget. The rest of the target positions
are called inner target positions. Then the target pattern is to be embedded
such that A′ is the origin,

−−−→
A′B′ direction is along the positive x-axis, and

−−−→
A′D′

direction is along the positive y-axis. Let the SER of the target pattern be a line
A′D′, and let λA′D′ be the lexicographically largest string between λA′D′ and
λD′A′ . Then the target is embedded in such a way that A′ is at the origin and
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−−−→
A′D′ direction is along the positive y-axis. We define, C′

target = Ctarget \{ttarget}
and C′′

target = Ctarget \ {htarget, ttarget}.

5.3 Outline of the Proposed Algorithm

The algorithm is logically divided into seven phases. A robot infers itself in a
phase from the configuration visible at that time. It does it by checking if certain
conditions are fulfilled or not. These conditions are expressed in Table 2. We
assume that in a visible configuration, no robot is seen on an edge. We maintain
such assumption by an additional condition that, if a robot sees a configuration
where a robot is on an edge then discard the snapshot and go to sleep.

Table 2. Set of conditions on an asymmetric configuration C having SER ABCD such
that the origin is at A

C0 C = Ctarget

C1 C′ = C′
target

C2 C′′ = C′′
target

C3 x-coordinate of the tail = x-coordinate of the ttarget

C4 There is no robot except the tail and target position on or above Ht, where
Ht is the horizontal line containing the tail

C5 y-coordinate of the tail is odd
C6 SER of C is not a square
C7 There is no robot except the tail and target position on or at the right of Vt,

where Vt is the vertical line containing the tail
C8 The head is at origin
C9 If the tail and the head is relocated respectively at C and A, then the new

configuration remains asymmetric
C10 C′ has a symmetry with respect to a vertical line

5.4 Detail discussion of the phases

Phase I A robot infers itself in Phase I if ¬(C4 ∧C5 ∧C6) ∧ ¬(C1 ∧C3) is true.
In this phase, the tail moves upward and all other robot remains static. the aim
of this phase is to make C4 ∧ C5 ∧ C6 true.

Theorem 4. If at some time t, we have an asymmetric configuration C in
phase I, then after one move of the tail upwards the tail robot remains the tail
and ¬(C1 ∧ C3) remains true. Also, after a finite number of moves by the tail
upwards C4 ∧ C5 ∧ C6 becomes true.

Proof. Let ABCD be the SER of the configuration at time t and after a move-
ment of the tail, say rt, upwards the configuration becomes C′. Let ABC ′D′ be
the SER of C′, then |AB| < |AD′| and rt is the only robot on C ′D′ line-segment.
Let A be the leading corner of the C. Note that movement of rt is such that
neither C ′ nor D′ can be the leading corner of C′. If C10 is true, then B is the
leading corner of C′. Otherwise, A remains the leading corner of C′. In both cases
configuration remains asymmetric and the tail remains the tail. If either of C1
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or C3 is false in C then that remains false in C′. Now it is easy to observe that
after a finite number of movements of the rt upwards C4∧C5∧C6 becomes true.
□

Phase II A robot infers itself in Phase II if (C4∧C5∧C6∧¬C8)∧((C2∧¬C3)∨¬C2)
is true. In this phase, the head moves towards the left, and other robots remain
symmetric. This phase aims to make C8 true.

Theorem 5. If at some time t, we have an asymmetric configuration C in
phase II, then after one move of the head towards left the new configuration
remains asymmetric and the coordinate system remains unchanged. Also, after
a finite number of moves by the head, C8 becomes true, and phase II terminates
with (C4 ∧ C5 ∧ C6 ∧ C8) ∧ (¬C2 ∨ (¬C3 ∧ C2)) true.

Proof. Let ABCD be the SER of C such that |AD| ≥ |AB| and λAB be the
lexicographically largest string. Let ith term of λAB be the first nonzero term.
After the movement of the head towards left if λnew

AB is the updated string, then
(i − 1)th term of λnew

AB be the first nonzero term. And the first (i − 1) terms of
the rest of the other considered strings are zero. Therefore, λnew

AB is the strictly
largest string after the movement of the head towards the left. Hence the new
configuration remains asymmetric and the coordinates system does not change.
After a finite number of movements of the head towards the left, it reaches the
origin that results C8 = true. □

Phase III A robot infers itself in Phase III if C4 ∧ C5 ∧ C6 ∧ C8 ∧ ¬C2 ∧ ¬C7 is
true. The aim of this phase is to make C7 true. In this phase, there are two cases
to consider. The robots will check whether C10 is true or not. If C10 is false,
then it robots check whether C9 is true or not. If C9 is not true then the tail
moves upward. Otherwise, the tail moves right or upwards in accordance with
m > n + 1 or m = n + 1. If C10 is true, then the tail moves left or upwards in
accordance with m > n + 1 or m = n + 1. Other robots remain static in both
cases.

Theorem 6. If at some time t we have an asymmetric configuration C in phase III
such that C10 is not true, then after one move of the tail the configuration re-
mains asymmetric and the coordinate system remains unchanged. Also, after one
move by the tail towards the right, we still have ¬C2 ∧ C4 ∧ C8 = true. After a
finite number of moves by the tail C4 ∧ C5 ∧ C6 ∧ C7 ∧ C8 ∧ C9 ∧ ¬C2 becomes
true.

Proof. Let ABCD be the SER of the C with λAB be the lexicographically largest
string. If C9 is false then after one movement of the tail upwards C9 becomes
true and finally, the configuration satisfies C4∧C5∧C6∧C8∧C9∧¬C2∧¬C7 =
true. Suppose, C9 is true. Let after one movement of the tail the SER remains
the same. Then C6 remains true and so we need to compare four strings. Note
that the D node is empty. Since A node is occupied (because C8 is true), so
λnew
AB remains larger than λnew

DC . Since C10 is false, so by the movement of tail
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robot λnew
AB remains larger than λnew

BA . So we need to compare only λnew
AB and

λnew
CD . It is easy to see that after the movement of the tail λnew

AB remains the
largest string. Thus, the configuration remains asymmetric and the coordinate
system remains unchanged. it is easy to observe that after the movement in
this case ¬C2 ∧ C4 ∧ C5 ∧ C6 ∧ C8 ∧ C9 remains true. Next, suppose after one
movement of the tail the SER gets changed. This can occur in two ways: either
when m = n+1 and the tail moves upward or when the tail is at C and it moves
rightwards. Suppose m = n+1 and the tail moves upward. Let the SER become
ABC ′D′ after the move. In Theorem 4, it is shown that if C10 is false and the
tail moves upward then the configuration remains asymmetric and the coordinate
system does not change. Suppose the tail is at C and it moves rightwards. Let
the new SER be AB′C ′D. Then note that B′ and D are empty but A and C ′

are occupied. Since before the move of the tail m > n + 1, AB′C ′D is a non-
square rectangle. Then we have to compare only two strings λnew

AB′ and λnew
C′D.

It is easy to see that λnew
AB′ remains the largest string. Thus, the configuration

remains asymmetric, and the coordinate system remains unchanged. It is easy to
show that C4 ∧C6 ∧C8 remains true for both the movements. For both types of
movements, C4∧C6∧C8∧C9 remains true. If C5 becomes false during the upward
movement, the algorithm enters into Phase I. And the tail moves one hop upward
to make C5 true. After that, the algorithm will again enter into Phase III. Thus,
after a finite number of movements of the tail robot C7 becomes true. □

Theorem 7. If at some time t we have an asymmetric configuration C such that
C10 is true, then after a finite number of moves by the tail C4 ∧C5 ∧C6 ∧C7 ∧
C8 ∧ C9 ∧ ¬C2 becomes true. The configuration remains asymmetric during the
movement of the tail.

Proof. Let ABCD be the SER of the C with λAB be the lexicographically largest
string. Let Suppose L be the line of symmetry of C. Since C is asymmetric, the
head and the tail must be on the same side of the L. Suppose after one movement
of the tail towards the left the SER remains the same. Since the height of the
configuration is odd, λnew

AB becomes larger than before whereas λnew
BA becomes

smaller than before. So, if after the move the tail does not reach D, then λAB

remains the largest string. Suppose, after the movement, the tail reaches D.
Because C is empty node, so λDC is smaller than both λAB and λBA. Thus if
the SER remains the same after the movement of the tail then λAB remains
the largest string. So the configuration remains asymmetric and the coordinate
system does not change. Suppose after the movement of the tail the SER changes.
If the tail’s movement upward is responsible for the change of the SER then using
the same argument of Theorem 6 the configuration remains asymmetric and the
coordinate system does not change. Suppose the tail’s movement towards the
left is responsible for the change of the SER. Then according to Phase III, the
SER is still a non-square rectangle. Let the new configuration be A′BCD′. Note
that only, B and D′ are occupied corners. Clearly, λBA′ is the larger one. Thus,
the configuration remains asymmetric but the coordinate system changes. After
this movement C10 becomes false. Thus, after a finite number of moves towards
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left it reaches at the corner D. Then the algorithm might enter Phase I and after
a finite move upwards the algorithm again enters into Phase III. Then after one
movement of the tail towards the left makes C10 false so from Theorem 6, after
a finite number of moves by the tail C4 ∧C5 ∧C6 ∧C7 ∧C8 ∧C9 ∧¬C2 becomes
true. □

Phase IV A robot infers itself in Phase IV if C4∧C5∧C6∧C7∧C8∧¬C2 is true.
In this phase, the inner robots execute function Rearrange to make C2 true.

Function Rearrange In this function inner robots move to take their respective
target positions. Let C be the current configuration. Let ABCD be the SER of C.
According to the assumption exactly two nonadjacent vertices are occupied by
robots in rectangle ABCD. Specifically, these two robots are the head and the
tail of the configuration. Let the head and tail be located at A and C respectively.
Consider the path P starting from A to C as mentioned in bold edges in Fig. 3.
Inner robots adopt Algorithm 1 considering this path as the line. Here, we define
a robot r′ at the left (right) side of r if r′ is closer to the head (tail) than r in
P. Let us order the target positions. Denote htarget as t1, then the next closest
target position from the head in P as t2. Similarly, denote the ith closest target
positions in P from the head as ti. Note that, tk is the ttarget. Similarly order all
the robots, {ri}ki=1, where r1 is the head and ri (i > 1) is the ith closest robot
from the head on P.

Fig. 3. Path joining the nodes A and C mentioned in bold edges

If ti is at the left of ri and there are no other robots in the sub-path of P
starting from the position of ri to ti, then ri moves to ti. The movement strategy
is described as follows. If ri and ti are at the same vertical (or, horizontal)
line then ri moves through the vertical (or, horizontal) line joining ri and ti.
Suppose, ri and ti are not at the same vertical line or horizontal line. If the
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downward adjacent vertex of ri is at the right of ti then ri moves downwards.
If the downward adjacent vertex is at the left of ti, then ri moves to its left
adjacent node on P.

If there is no robot rj such that tj is at the left of rj , then movements of
an inner robot towards right start. If ti is at the right of ri, and there are
no other robots in the sub-path of P starting from the position of ri to ti, then
ri moves to ti. The movement strategy is described as follows. If ri and ti are
at the same vertical (or, horizontal) line then ri moves through the vertical (or,
horizontal) line joining ri and ti. Suppose, ri and ti are not at the same vertical
line or horizontal line. If the upward adjacent vertex of ri is at the left of ti
then ri moves upwards. If the upward adjacent vertex is at the right of ti, then
ri moves to its right adjacent on node P.

Algorithm 2: Function Rearrange

1 if ti is at the left of ri then
2 if there are no other robot in the sub-path of P starting from position of ri to ti

then
3 if ri and ti are at the same vertical (or, horizontal) line then
4 ri moves towards ti through the vertical (or, horizontal) line joining ri and ti;
5 else
6 if the downward adjacent vertex of ri is at the right of ti then
7 ri moves downwards;
8 else
9 ri moves to its left adjacent node on P;

10 else if ti is at the right of ri then
11 if there is no inner robot rj such that tj is at the left of rj then
12 if there are no other robot in the sub-path of P starting from position of ri to

ti then
13 if ri and ti are at the same vertical (or, horizontal) line then
14 ri moves towards ti through the vertical (or, horizontal) line joining ri

and ti;
15 else
16 if the upwards adjacent vertex of ri is at the left of ti then
17 ri moves upwards;
18 else
19 ri moves to its right adjacent node on P;

Theorem 8. If at some time t, we have an asymmetric configuration C in
phase IV, then after any movement of inner robots according to the function
rearrange, the new configuration remains still asymmetric and the coordinate
system remains unchanged. During these movements of inner robots, C4 ∧ C5 ∧
C6 ∧ C7 ∧ C8 remains true. After a finite number of movements of inner robots
according to the function rearrange C2 becomes true.

Proof. Let ABCD be the SER of C with λAB as the largest string. First, we
show that no inner robot moves to the BC line. On the contrary, Suppose an
inner robot ri lands at a node v2 on the BC line from a point v1 at the left
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side of v2. There are two cases: v1 is at the left of v2 or v1 is at the right
of v2. Suppose, v1 is at the left of v2. Then consider the downwards nodes u1

and u2 of v1 and v2 respectively. ti cannot be at u2 or v2, because there is no
target position on BC line segment. If ti is at u1 then according to rearrange
ri shall move to u1. Otherwise, ti can be at the left of the u1. In that case,
if u1 is occupied by a robot then there is a robot in between ri and ti in the
path P. In that case, ri does not move according to rearrange. Otherwise, u1

is unoccupied, then according to rearrange ri shall move to u1. Thus, in all the
cases, ri does not move to v2. Similarly, if v1 is at the right of v2, then also we
can show that that ri does not move to v2. Next, since C4 is true, there is no
target position of the line segment DC or above it. For this reason, we can show
that no inner robot moves to CD line segment according to rearrange.

Suppose ri is an inner robot. Note that in C, A and C corners of SER are
occupied and others are not. Movements of inner robots are designed such that
SER does not change with that. Because C7 (C4) is true, there is not any other
robot except the tail or any target position on the BC (CD) line. We showed
that no inner robot ever moves on to BC line segment in function rearrange.
So, B remains unoccupied after the movement of ri. Next, we showed that no
inner robot moves to the CD line segment, so D remains unoccupied after the
movement of ri. Thus, it is sufficient to consider only two strings λAB and λCD.

Note that, strings λAB and λCD are the two binary strings of the path P
from the different ends. Now, the movements of the inner robots are designed
in such a way that if ti is at the left (right) of ri then ri moves to a point
that is at the left (right) of the ri. This is an adoption of the Algorithm 1.
Thus, from Lemma 1 and Lemma 2, it is evident that during the movement of
the inner robots, λAB remains the larger string. Thus, the configuration remains
asymmetric and the coordinate system does not change. Since the head and the
tail do not move at all, all inner robot moves inside the SER formed by the
head and the tail, and no inner robot moves onto line-segment BC or CD, so
C4∧C5∧C6∧C7∧C8 remains true throughout the movements of the inner robots.
Also from Lemma 3, after a finite time, all inner robots take their respective
positions making C2 true.

Phase V A robot infers itself in Phase V if C2∧C4∧C5∧C6∧C8∧¬C3 is true. In
this phase, the tail moves horizontally to make C3 true. Let Ht be the horizontal
line containing the tail and T ′ be the point on the Ht that has the same x-
coordinate with ttarget. If C10 is not true then the tail moves horizontally towards
T ′. Next let C10 be true. Let ABCD be the SER of the current configuration
C and AB′C ′D′ be the SER of the C′. Let C ′′ be the point where line B′C ′

intersects with Ht. Let E be the point on the Ht. Let the tail robot be at T . If
both T and T ′ are at the right side of C ′′ or in on the line segment DE, then
the tail moves towards T ′. Otherwise, the tail moves leftward.

Theorem 9. If at some time t, we have an asymmetric configuration C in
phase V, then after a finite number of movements of the tail C2 ∧ C3 ∧ C4 ∧
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Fig. 4. An image related to Phase V

C5 ∧C6 ∧C8 becomes true. If at this point the configuration has vertical symme-
try then C1 must be true.

Proof. Let ABCD be the SER of C with λAB as the largest string. Let AB′C ′D′

be the SER of the C′. Suppose the tail is at T . Suppose C10 is not true. Since C4

is true, for this case, throughout the movement of the tail towards T ′ the con-
figuration remains asymmetric and the coordinate system remains unchanged.
After a finite number of movements, C3 becomes true. Next, suppose C10 is true.
In this case, if T and T ′ both are on the DE line segment then it is easy to see
that the coordinate system remains invariant during the movement of the tail.
Also, if both T and T ′ are at the right side of the C ′′, then the tail remains the
tail while the movement of the tail towards T ′.

Next, suppose T is on the DE line segment but T ′ is at the right of the C ′′.
In this case, the tail moves leftward. When the tail moves at the left of the D,
then the coordinate system flips. The tail remains the tail but the robot at B′

becomes the head. Then it reduces it to one of the previous cases. Next, suppose
T ′ is on the DE line segment but T is at the right of the C ′′. In this case, the tail
moves leftwards towards T ′. When the tail reaches C ′′, the coordinate system
flips and the robot at B′ becomes the head. Thus, it again reduces to one of the
previous cases. Therefore, C3 becomes true after a finite number of movements
of the tail.

After C3 becomes true, if the configuration has a vertical symmetry then the
T ′ must be E which coincides with a grid node. Before the tail moved on E the
configuration was asymmetric. Without loss of generality let A be the leading
corner. Since C8 was true in this phase, A was occupied by the head robot. So
after C3 becomes true, A is occupied. Due to the symmetry, B′ must be occupied
by a robot. According to the embedding of the target pattern, both the left and
the right bottom corners also have target positions. If possible let both A and B′

are not unoccupied by any target position. This gives, at this point three robots
three robots are not at their target position, which contradicts the assumption
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C2 = true according to which k − 2 inner robots are at their target positions.
Since A and B′ both are occupied by the robots, the htarget must be occupied.
Thus, C1 is true.

Phase VI A robot infers itself in Phase VI if ¬C1∧C2∧C3∧C4∧C5∧C6 is true.
In this phase, the head moves horizontally to reach htarget. After the completion
of this phase, ¬C0 ∧ C1 ∧ C3 becomes true.

Theorem 10. If at some time t, we have an asymmetric configuration in phase VI,
then after a finite number of movements by the head towards htarget, C1 ∧ C3 ∧
C4∧C5∧C6 becomes true. If the configuration becomes such that it has a vertical
symmetry then Ctarget has the same.

Proof. Suppose ABCD is the SER of the current configuration C with λAB as
the largest string. Suppose the head robot is at H in C and htarget is at H ′. First,
suppose the H ′ is at the left of the H. Then following from the Theorem 5, when
the head moves towards the left, the configuration remains asymmetric and the
coordinates system remains the same. Suppose the H ′ is at the right of the
H. Suppose the tail is at T and the ttarget is at T ′. According to the target
embedding, the SER of the embedded target pattern should also be ABC ′D′

with λtarget
AB as a lexicographically largest string, where T ′ is on the line segment

C ′D′. Since C3 is true, T and T ′ are at the same vertical line. If the tail moves
from T to T ′ and the head reaches from H to H ′, then the target is formed.
Let Ch be the configuration if the head moves from H to H ′. Then λtarget

AB will
be largest string in Ch. λtarget

AB may not be the strictly largest string in Ch, only
when Ctarget has a vertical symmetry. In both cases, while the movement of the
head the configuration remains asymmetric and the coordinate system does not
change. Therefore, after a finite number of moves by the head C1 becomes true.
And, throughout the movements of the head, C3 ∧ C4 ∧ C5 ∧ C6 remains true.

Phase VII A robot infers itself in Phase VII if ¬C0 ∧ C1 ∧ C3 is true. In this
phase, the tail moves vertically to reach ttarget.

Theorem 11. If at some time t we have a configuration C within phase VII,
then after a finite number of movements of the tail towards ttarget, C0 becomes
true.

Proof. Suppose ABCD is the SER of the current configuration C. Let C be
asymmetric. For such a case, let λAB be the lexicographically largest string.
Suppose the tail is at T and ttarget is at T ′. If T ′ is above T , then there can be
two cases: C10 is true or not. If C10 is true, then in Theorem 4 it is shown that
when the tail moves upward the coordinate flips, but the tail remains the tail.
Even if the coordinate system flips, due to the symmetry of C′, C1 remains true.
So after a finite number of movements of the tail upwards, the tail reaches T ′

resulting in C0 = true. Next suppose C10 not true. Then from Theorem 4, it is
shown that when the tail moves upward, the configuration remains asymmetric
and the coordinate system remains unchanged. Therefore after a finite number
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of movements of the tail upwards, the tail reaches T ′ resulting in C0 = true. Next
suppose, T ′ is below T . Let ABC ′D′ be the SER of the Ctarget, then T ′ is on the
C ′D′ and λAB is the largest string in Ctarget. Since C1 is true so, all the target
positions are occupied but ttarget. Thus, it is easy to see that if ttarget moved
upwards then λAB becomes the strictly largest string in new Ctarget. Thus, when
the tail moves from T to T ′, the λAB remains the strictly largest string.

Next, let C be symmetric. Since the initial configuration is asymmetric, so
the symmetric configuration can be formed via Phase V and Phase VI. Thus the
symmetry is a vertical symmetry, resulting in λAB = λBA as the strictly largest
string. For both the Phase V and Phase VI, it terminates with C4 = true.
Therefore, the T ′ is at the downward of the tail. Using the similar argument as
above, λAB = λBA remains the strictly largest string after each movement of
the tail downwards until it reaches T ′.

5.5 Correctness of the Proposed Algorithm

In this section, we prove the correctness of the proposed algorithm. First, we
show that any initial asymmetric configuration for which C0 is not true falls
in one of the seven phases. Then we show that from any asymmetric initial
configuration, the algorithm allows the configuration to satisfy C0 = true after
passing through several phases.

Lemma 6. Any asymmetric initial configuration, satisfying C0 = false, falls
under one and exactly one of the seven phases of the proposed algorithm.

Proof. From Fig 5 the proof follows.

(Phase VII)

(Phase I)

(Phase II)

(Phase III)(Phase IV)

(Phase VI)

(Phase V)(Phase II)

Fig. 5. For any configuration with C0 = false belongs to one of the seven phases
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Theorem 12. The proposed algorithm can form any pattern consisting of k
points by a set of k oblivious asynchronous robots if the initial configuration
formed by the robots is an asymmetric configuration and has no multiplicity
point.

Proof. Let Ci be an initial asymmetric configuration formed by k robots with
no multiplicity points. Let Ctarget be any target configuration consisting of k
target positions. According to the Lemma 6, if Ci ̸= Ctarget then the algorithm
starts from any of the seven phases. Suppose after a finite time the algorithm
is in one of the seven phases, then we show that after finite time C0 becomes
true. If at some time the algorithm is in some specific phase, then next which
phase the algorithm can enter. In Fig. 6, a digraph is given that shows the phase
transitions. This digraph can be created from the support of Theorem 4, 5, 6, 7,
8, 9, 10, 11. The only cycle in the digraph is the cycle induced by phase II and
phase III. From Theorem 6 and Theorem 7, we can conclude it does not create
any live-lock there. From the diagram, we can conclude that any path starting
from any of the phases leads to phase VII after finite time. From Theorem 11,
the phase VII results C0 = true within finite time.

Phase II

Phase III

Phase IV

Phase I

Phase V

Phase VI

Phase VII

Fig. 6. Phase transition digraph

5.6 Space complexity and move complexity of the proposed
algorithm

Recall the Definition 1 of the space complexity of an algorithm executed by a set
of robots on an infinite rectangular grid. In Theorem 13, we calculate the space
complexity of the proposed algorithm.

Theorem 13. Let D = max{m,n,m′, n′} where m×n (m ≥ n) is the dimension
of the SER of the initial configuration and m′ × n′ (m′ ≥ n′) is the dimension
of the SER of the target configuration. Then space complexity of the proposed
algorithm is at most D + 4.
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Proof. The tail robot is the only robot that moves out of the current SER. The
head robot only moves in Phase II and Phase VI and the head robot either
moves to the corner or the current SER moves towards htarget. In Phase IV the
inner robots move but they do not move outside the current SER throughout the
function Rearrange. In the rest of the Phases I, III, V, VII, the tail robot moves
only. The tail robot is responsible for expanding the size of the configurations.
Consider the rectangle R of dimension D × D that contains the initial config-
uration and the embedded target pattern. Next, let us define the size of a still
configuration C is the dimension of the smallest enclosing square that contains
all the robots in C.

In Phase I, the tail moves upward. If the initial configuration already satisfies
C4∧C6∧¬C5 = true then in order to make C5 true, the tail has to move one hop
upwards, outside the R. Thus, the size of the current SER becomes D+1. If for
the initial configuration, C4 is true but C6 is not true. Then by one movement
upwards C6 becomes true. If after this C5 is not true, then one more movement
upwards by tail makes C5 true. So, finally, the size of the SER is D+2. If C4 is
not true for the initial configuration, then the tail moves upward until it reaches
the horizontal line ttarget. After this, the tail moves one step upwards to make
C4 true, and C6 becomes true with this move. If at this point C5 is not true then
it again moves upwards one hop. Thus, the size of the SER becomes D+2.

Next, suppose the algorithm enters Phase III from Phase I. Suppose C10 is
false. If C9 is not true then the tail moves upwards and C9 becomes true. After
that, only C5 will become false and the algorithm enters into Phase I again.
After one move of the tail upwards in Phase I, C5 becomes true. The algorithm
again enters in Phase III with C9 = true. At this point m > n + 1, because
when the first time comes from Phase I, C6 = true assures m ≥ n and while the
second time entering Phase I, the upward movement of tail assures m > n + 1.
Thus, more two upward movements by the tail take place making the size of the
SER D+4. Next if C10 is true, then on being C9 = false the tail moves upward.
Again for the same reason as the last case finally the size of the SER becomes
D + 4 when all the upward movements of the tail are done. Now in order to
make C7 true the tail robot at most needs to step away one hop rightwards or
leftwards form R. So after making C7 true the size of the SER remains at most
D + 4. Now, one can easily verify from the above argument that if the initial
configuration is such that the algorithm first enters Phase III, then it terminates
with making the size of the SER at most D + 2.

In Phase V the tail moves only on the horizontal line Ht that it contains and
moves towards the T ′ on the Ht such that T ′ and ttarget are on the same vertical
line. If at the beginning of this phase, the tail is inside the R then it does not
step out of it. If the tail is outside the R then the horizontal movements of the
tail do not increase the size of the current SER. Thus movements of the tail in
this phase do not consume extra space.

In Phase VII, the tail moves towards the ttarget vertically. It is easy to see
that the movements of this phase also do not consume any extra space.
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Thus, all the robots move inside a (D + 4) × (D + 4) dimensional square
containing the R. Therefore total space consumed by the proposed algorithm is
at most D + 4. □

Next, we find out the move complexity of the proposed algorithm. Move-
complexity of an algorithm executed by a set of robots on a rectangular grid is
the total number of movements made by the robots, where one movement of a
robot is considered as a movement from a node to one of its adjacent nodes. The
move-complexity is recorded in the following Theorem 14.

Theorem 14. The proposed algorithm requires each robot to make O(D) move-
ments, hence the move-complexity of the proposed algorithm is O(kD).

Proof. First, consider the movement of the head robot. When the head robot
moves towards the origin in Phase II, from Theorem 5 it remains the head
throughout the movement. It is easy to see that, for this case total number of
moves is almost D/2. In Phase VI, when the head moves towards htarget, the
head remains the head. In this phase at most D/2 moves by the head robot is
required. Thus total number of moves by the head robot is at most D.

Next, consider the tail robot movements. In Phase I, the tail robot needs to
move upward at most D steps to make C4 true. Further, to make C5 and C6

true, the tail needs to move at most two steps upward. In Phase III, the tail
needs to move horizontally at most D+1 steps. In Phase V, again the tail robot
moves horizontally at most D + 1 steps. In Phase VII, the tail moves vertically
at most D + k0 steps, where k0 is a constant less than D. Thus, the tail needs
to move O(D) steps in total.

Next, consider the movements of the inner robots. Suppose ri is an inner
robot located at point Ri in the initial configuration. Let ti be the corresponding
target position of ri. If ti and Ri are on the same horizontal line, then after that
ri moves horizontally towards ti and after reaching ti never moves afterward.
Otherwise, suppose ti is at the left of the Ri. Then ti is on a horizontal line
downwards to that of Ri. Until the downwards node of ri is on the horizontal
line that contains ti, the downward node of the ri will always be at the right of
ti. So, ri moves downwards through the vertical line containing Ri. Suppose ri
and ti are on a neighboring horizontal line. There are two cases: the downward
node of ri at the left of the ti or at the right of the ti. If the downward node
of ri at the left of the ti, then the ri moves downwards, and ri and ti are on
the same horizontal line. After that ri moves towards ti through the horizontal
line that contains both. Thus, it is easy to see that the path traveled by the
ri to reach ti has a minimum length which is at most 2D. Next, suppose the
downward node of ri at the right of the ti. Then the ri moves to its left. It
keeps moving towards its left until ri and ti are on the same vertical line. Then
after one movement downwards ri reaches ti. In this case, the path traveled by
the ri to reach ti has a minimum length which is at most 2D. Thus, in either
case, the ri moves at most 2D steps.



28 A. Sharma, S. Ghosh, P. Goswami, and B.Sau

If ti is at the right of the Ri, then one can similarly show that the path
traversed by ri from Ri to ti has length at most 2D. Thus each robot makes O(D)
moves throughout the execution of the algorithm. Hence the result follows. □

6 Conclusion

This work first provides an algorithm that solves the Arbitrary Pattern For-
mation (APF) problem in an infinite line by a robot swarm. Then adopting the
method, it provides another algorithm that solves APF in an infinite rectangular
grid by a robot swarm. The robots are autonomous, anonymous, identical, and
homogeneous. The robot model used here is the classical OBLOT model where
the robots are oblivious i.e., have no persistent memory, and silent i.e., explicit
communication ability. The robots work under a fully asynchronous scheduler.
The proposed algorithm is almost space-optimal (Theorem 13) and asymptoti-
cally move-optimal (Theorem 14).

A few limitations of this work are the following. Here we assume that the ini-
tial configuration is asymmetric. Finding complete characterization of the initial
configurations from which APF can be solved deterministically is an interesting
future direction. Then the version of the APF do not allow multiplicity point
in the target configuration, i.e., the number of target positions is equal to the
number of robots present in the system. Solving a more generalized version of
the problem that allows target positions with target positions less than total
number of robots, is a possible future direction. Next, the proposed algorithm is
almost space optimal, so finding out the exact lower bound when starting from
an asymmetric initial configuration is an interesting direction. Also, this does
not consider time-optimality, so consider all the three parameters space, move
and time at the same time can be an interesting future work.
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